机器人工程技术人员 国家职业标准

(征求意见稿)

1 职业概况

1.1 职业名称

机器人工程技术人员

1.2 职业编码

2-02-38-10

1.3 职业定义

从事机器人结构、控制、感知技术和集成机器人系统及产品研究、设计的工程技术人员。

1.4 专业技术等级

本职业共设三个等级,分别为初级、中级、高级。

初级、中级分为三个职业方向:机器人结构设计与开发、机器人控制设计与开发、机器人系统设计与开发。

高级不分职业方向。

1.5 职业环境条件

室内, 常温。

1.6 职业能力特征

具有较强的学习能力、计算能力、表达能力、空间感及分析、推理和判断能力。

1.7 普通受教育程度

大学专科学历(或高等职业学校毕业)。

1.8 职业培训要求

1.8.1 培训时间

机器人工程技术人员需按照本标准的职业要求参加有关课程培训,完成规定学时,取得学时证明。初级 128 标准学时;中级 128 标准学时;高级 160 标准学时。

1.8.2 培训教师

承担初级、中级理论知识或专业能力培训任务的人员,应具有相关职业中级 及以上专业技术等级或相关专业中级及以上职称。

承担高级理论知识或专业能力培训任务的人员,应具有相关职业高级专业技术等级或相关专业高级职称。

1.8.3 培训场所设备

理论知识培训在标准教室或线上平台进行;专业能力培训在具有相应软、硬件条件的培训场所进行。

1.9 专业技术考核要求

1.9.1 申报条件

- ——取得初级培训学时证明,并具备以下条件之一者,可申报初级专业技术等级:
 - (1) 取得技术员职称。
 - (2) 相关专业大学专科以上应届毕业生(含在读的应届毕业生)。
 - (3) 具备相关专业大学专科以上学历, 从事本职业技术工作满1年。
 - (4) 技工院校毕业生按国家有关规定申报。
- ——取得中级培训学时证明,并具备以下条件之一者,可申报中级专业技术 等级:
 - (1) 取得助理工程师职称,从事本职业技术工作满2年。
- (2) 具备大学专科学历或学士学位或大学专科学历,取得初级专业技术等级后,从事本职业技术工作满3年。
- (3) 具备硕士学位或第二学士学位,取得初级专业技术等级后,从事本职业技术工作满1年。
 - (4) 具备相关专业博士学位。
 - (5) 技工院校毕业生按国家有关规定申报。
- ——取得高级培训学时证明,并具备以下条件之一者,可申报高级专业技术 等级:
 - (1) 取得工程师职称,从事本职业工作满3年。

- (2) 具备硕士学位或第二学士学位或大学本科学历或学士学位,取得中级专业技术等级后,从事本职业技术工作满4年。
- (3) 具备博士学位,取得中级专业技术等级后,从事本职业技术工作满1年。
 - (4) 技工院校毕业生按国家有关规定申报。

1.9.2 考核方式

从理论知识、专业能力两个维度对专业技术人员专业技术水平进行考核,分 别以笔试(机考)、实操考核。

理论知识考试以笔试或机考方式为主,主要考查专业技术人员从事本职业应 掌握的基本知识和专业知识;专业能力考核以工程实践、上机实践等实操考核方 式进行,主要考查专业技术人员从事本职业应具备的实际工作能力。

理论知识考试、专业能力考核均实行百分制,成绩皆达 60 分(含)以上者为合格。考核合格者获得相应专业技术等级证书。

1.9.3 监考人员、考评人员与考生配比

理论知识考试中的监考人员与考生配比不低于 1:15, 且每个考场不少于 2 名监考人员;专业能力考核中的考评人员与考生配比不低于 1:5, 且考评人员为 3 人(含)以上单数。

1.9.4 考核时间

理论知识考试时间不少于90分钟:专业能力考核时间不少于150分钟。

1.9.5 考核场所设备

理论知识考试在标准教室进行;专业能力考核在具有相应软、硬件条件的考核场所进行。

2 基本要求

- 2.1 职业道德
- 2.1.1 职业道德基本知识
- 2.1.2 职业守则
 - (1) 遵纪守法,爱岗敬业。
 - (2) 精益求精,勇于创新。
 - (3) 爱护设备,安全操作。
 - (4) 遵守规程, 执行工艺。
 - (5) 认真严谨, 忠于职守。
- 2.2 基础知识

2.2.1 基础理论知识

- (1) 机械原理知识。
- (2) 理论力学知识。
- (3) 材料力学知识。
- (4) 工程图学知识。
- (5) 计算机辅助设计与制造(CAD/CAM)知识。
- (6) 模拟和数字电路技术知识。
- (7) 自动控制原理知识。
- (8) 微机原理及接口技术知识。
- (9) 操作系统知识。
- (10) 计算机网络知识。
- (11) 数据结构与算法知识。
- (12) 数据库知识。
- (13) 软件工程知识。

2.2.2 技术基础知识

- (1) 机械设计知识。
- (2) 金属工艺学知识。
- (3) 液压与气动技术知识。
- (4) 机电传动控制知识。

- (5) 测试与传感技术知识。
- (6) 有限元分析知识。
- (7) 结构分析与仿真知识。
- (8) 电机与电气控制技术知识。
- (9) 单片机原理及其应用知识。
- (10) 现场总线控制技术知识。
- (11) 机器人技术与应用知识。
- (12) 分布式数据采集与数据预处理知识。
- (13) 分布式图像与视频流处理知识。
- (14) 常用数据报表与可视化技术方法。

2.2.3 安全知识

- (1) 机械安全技术知识。
- (2) 电气安全知识。
- (3) 机电安全工程知识。
- (4) 机器人应用、设备与外部服务组件安全管理知识。
- (5) 机器人系统服务数据活动安全管理知识。
- (6) 机器人系统基础设施安全管理知识。
- (7) 机器人系统应急响应管理知识。

2.2.4 其他相关知识

- (1) 环境保护知识。
- (2) 文明生产知识。
- (3) 劳动保护知识。
- (4) 资料保管保密知识。

2.2.5 相关法律、法规知识

- (1)《中华人民共和国民法总则》相关知识。
- (2)《中华人民共和国劳动法》相关知识。
- (3)《中华人民共和国安全生产法》相关知识。
- (4)《中华人民共和国网络安全法》相关知识。
- (5)《中华人民共和国数据安全法》相关知识。

职业编码 2-02-38-10

- (6)《中华人民共和国特种设备安全法》相关知识。
- (7)《关键信息基础设施安全保护条例》相关知识。
- (8)《网络安全等级保护条例》相关知识。
- (9)《数据安全管理办法》相关知识。

3 工作要求

本标准对初级、中级、高级的专业能力要求和相关知识要求依次递进,高级别涵盖低级别的要求。

3.1 机器人结构设计与开发

机器人结构设计与开发方向包括机器人结构方案设计,机器人零部件设计,机器人结构分析,机器人机械装配与测试。

3.1.1 初级

职业功能	工作内容	专业能力要求	相关知识要求
	1.1 需求调研与分析	1.1.1 能根据客户需求梳理机器人的功能需求,编写功能需求报告 1.1.2 能组织实施市场调研,分析企业及产品情况,编写产品对比分析报告 1.1.3 能分析机器人的结构需求,编写结构需求报告	1.1.1 常见机器人认知 1.1.2 市场调研方法
1. 机器人结构方案设计	1.2 工业机 器人子系统 方案编写	1.2.1 能根据需求编制工业机器人 关键参数、技术指标等 1.2.2 能分析工业机器人的功能、性 能、防护等机械系统需求 1.2.3 能根据模块需求,设计工业机 器人多种模块结构方案	1.2.1 常见机械机构实现原理 1.2.2 常用器件工作原理 1.2.3 动力元件选型方法
	1.3 服务、 特种机器人 子系统方案 编写	1.3.1 能根据需求编制服务型机器 人关键参数、技术指标等 1.3.2 能分析服务型机器人的功能、 性能、防护等机械系统需求 1.3.3 能根据需求编制特种机器人 关键参数、技术指标等 1.3.4 能分析特种机器人的功能、性 能、防护等机械系统需求 1.3.5 能根据模块需求,设计特种、 服务机器人多种模块结构方案	1.3.1 机械系统方案设计知识 1.3.2 机械传动形式知识 1.3.3 特种机器人构造方法
2. 机器人零部件设计	2.1 机器人核心部件建模	2.1.1 能使用计算机辅助设计软件 (CAD)设计轴类、法兰盘类、齿轮等 简单零件 2.1.2 能使用三维设计软件清晰建 模机器人组件的结构,如驱动组件、	2.1.1 机构组成原理基础 础 2.1.3 三维设计软件知识

		旋转关节组件	
		2.1.3 能根据需求修改轴类、法兰盘	
		类、齿轮等零件模型	
		2.2.1 能根据机器人零件的使用场	
		所,选用合理的加工材料 2.2.2 能根据机器人零件材料及精	2.2.1 工程材料基础知
	2.2 零件材	度要求,选用车削、铣削等合理的加	识
	料选型		'^
	特选至	2.2.3 能根据机器人零件的韧性、耐	方法
		磨性等需求,选用合理的热、表面处	
		理方式	
		2.3.1 能识读工程图的表达内容及	
		制图标准	
	2.3 工程制	2.3.2 能使用三维设计软件绘制对	
	图	应关系正确的零件工程图纸	2.3.1 制图基础知识
		2.3.3 能根据工件加工工艺,合理	
		标注表面粗糙度和形位公差种类和数	
		III.	3.1.1 机器人结构系统
	3.1 分析 机器人结构 组成	 3.1.1 能识别机器人本体结构、驱动	理论知识
		及传动单元、控制感知单元的类型	3.1.2 机器人系统组成
		3.1.2 能计算机器人的自由度	知识
		3.1.3 能分析和评估机器人的结构	3.1.3 机器人机构运动
		对机器人性能的影响	示意方法
			3.1.4 自由度计算方法
		3.2.1 能根据机器人使用工况,计算	3.2.1 常用电机基础知
		驱动力、速度、惯量等动力参数	识
3. 机器人	3.2 动力计	3.2.2 能根据计算结果进行机器人	3.2.2 常用减速器基础
结构分析	算	 的电机、减速器选型计算及校核	知识
		3.2.3 能根据实际情况选择编码器	3.2.3 动力选型校核计
		等反馈单元	算方法
		3.3.1 能分析轴类零件等机器人关	3.3.1结构受力分析方
		键零部件的受力	法
	3.3 受力分	3.3.2 能分析机器人的结构刚度、强	3.3.2 材料力学、静力学
	析	度	知识
		3.3.3能根据机器人的受力分析结	3.3.3 常用金属材料性
		果,合理修改机器人结构	能知识
	<u> </u>	<u> </u>	,

4. 机器人 机械装配 与测试	4.1 机器人装配	4.1.1 能识读装配信息及安装注意 事项等装配工程图 4.1.2 能合理装配机器人机械结构 4.1.3 能指导技术工人装配机器人	4.1.1 机械装配知识及注意事项
	4.2 机器人功能调试	4.2.1 能调试机器人旋转部件、驱动等部件 4.2.2 能使用测量仪器(皮尺、游标卡尺等)测量机器人的关键参数 4.2.3 能使用测量仪器(激光跟踪仪、水平仪、千分表等)标定机器人	4.2.1 测量仪器使用方法
	4.3 机器人 机械装配测 试	4.3.1 能制定机器人功能测试计划 并进行行走、转向、夹取等功能测试 4.3.2 能制定机器人的性能参数测 试计划并进行最大移动速度、夹持负 载、转弯半径等性能测试 4.3.3 能分析装配、测试问题,编写 测试分析报告	4.3.1 机械设计禁忌知识

3.1.2 中级

职业功能	工作内容	专业能力要求	相关知识要求
	1.1服务机器 人整机框架 设计	1.1.1 能合理设计服务型机器人整机结构 机结构 1.1.2 能进行驱动、执行机构等关键器件选型 1.1.3 能分析结构问题,并制订优化方案	1.1.1服务型机器人结构知识
1. 机器人 结构方案 设计	1.2特种机器 人整机框架 设计	1.2.1 能独立进行合理的特种机器 人整机结构设计,具有良好的加工、装配工艺性 1.2.2 能根据机器人零部件约束条件,对电机、减速器、驱动器、传动部件等零部件进行选型 1.2.3 能分析结构问题,并制订优化方案	1.2.1 机械原理 1.2.2 机械系统设计知识 1.2.3 特种机器人结构知识
	1.3. 工业机 器人工艺流 程分析	1.3.1 能分析工业机器人的工况、节 拍、末端执行机构等操作工艺流程需求 1.3.2 能根据需求,制定简易的操作 工艺流程 1.3.3 能对操作工艺流程进行可行 性分析	1.3.1 工艺管理基础知识 1.3.2 机器人操作流程 1.3.3 可行性分析方法
2. 机器人机构设计	2.1 机器人系 统建模	2.1.1 能使用三维设计软件对系统进行合理规则总体布局、正确装配各模块关系、连接方式合理可靠的完整性建模(包括零部件等) 2.1.2 能根据技术要求,设计和绘制视图合理、符合标准要求的常用装配体的图纸 2.1.3 能使用三维设计软件进行参数化建模	2.1.1 机件零件图、装配 图常用表达方法
	2.2 传动系统设计	2.2.1 能根据机器人运动需求对比分析常用传动机构的适用性,如齿轮传动、带传动、链传动等2.2.2 能选用合理的传动机构,并设计机器人齿数、模数、导程等传动组件详细参数2.2.3 能根据系统性能要求,计算、校核及选型动力单元	2.2.1 机电传动传动系统设计知识
	2.3 结构加工工艺设计	2.3.1 能制订出合理的机器人零部件加工工艺卡 2.3.2 能合理选用机器人零部件材料	2.3.1 机械加工工艺知识 2.3.2 金属材料及热处理 基础知识

		2.3.3 能分析零部件加工工艺的合理性	
	3.1 力学仿真 分析	3.1.1 能使用有限元仿真软件对机器人结构进行静力学仿真分析3.1.2 能进行机器人结构的静强度、静刚度、疲劳强度分析3.1.3 能根据仿真结果,编写力学仿真分析报告	3.1.1 系统仿真与分析知识 识 3.1.2 运用静力学计算与分析方法 3.1.3 结构的弹塑性非线性分析知识
3. 机器人性能仿真	3.2运动仿真	3.2.1 能使用 CAE 仿真软件对机器人结构进行运动仿真分析 3.2.2 能根据机器人的运动合理简化仿真模型、布置网格等 3.2.3. 能根据仿真结果,编写运动仿真分析报告	3.2.1运动学与动力学计算与分析方法 3.2.2计算机辅助分析软件基础知识
	3.3性能优化	3.3.1 能识读仿真分析结果 3.3.2. 能提出机器人的结构优化方 案 3.3.3 能根据优化方案,修改机器人 的结构模型	3.3.1结构有限元优化设计方法
4. 机器人质量评估	4.1.机器人功能验证	4.1.1 能根据机器人的功能,制订测试计划 4.1.2 能根据测试计划,搭建测试平台 4.1.3 能制定测试方法、规范	4.1.1 结构件疲劳、屈服 强度等测试方法 4.1.2 测试流程规范
	4.2. 机器人可靠性评估	4.2.1 能对机器人进行碰撞测试,并 输出评估报告 4.2.2 能对机器人进行耐振动、冲击 等机械测试 4.2.3 能对机器人进行防尘防水、耐 高低温度的环境测试	4.2.1 可靠性测试方法与 规范 4.2.2 制造质量分析与控 制方法
	4.3 机器人 测试评估优 化	4.3.1 能根据机器人测试结果,评估运动学特性 4.3.2 能根据机器人测试结果,评估动力学特性 4.3.3 能根据评估结果,提出机器人改进措施	4.3.1 质量评估分析知识 4.3.2 机器人优化方法

3.1.3 高级

职业功能	工作内容	专业能力要求	相关知识要求
	1.1 机器人 技术咨询	1.1.1 能根据同类型机器人产品特征对比,编写竞品分析报告 1.1.2 能根据机器人产品整体特征及体系,梳理产品竞争优劣势并编写升级或重构方案 1.1.3 能根据客户需求,制定符合客户特点的机器人产品建设及管理方案 1.1.4 能参与机器人项目架构与产品设计,并根据技术发展趋势把控产品技术方向	1.1.1 机器人质量与安全控制知识
1. 机器人技 术管理	1.2 解决方案设计	1.2.1 能制定机器人产品宣传策略, 引导和挖掘客户潜在需求 1.2.2 能挖掘机器人行业普遍需求, 总结分析机器人产品价值特征 1.2.3 能主动分析机器人市场情况, 制定机器人产品运营策略 1.2.4 能根据机器人市场及客户信息,研判机器人产品业务方向	1.2.1 机器人需求挖掘知识 1.2.2 机器人产品市场运营策略
	1.3指导生产	1.3.1 能编写机器人机械加工工艺、电气加工工艺、软件设计等规程 1.3.2 能收集生产指标数据,并根据实际数据建立生产分析模型 1.3.3 能根据数据分析情况指导生产及流程优化 1.3.4 能根据生产流程,管理跨部门的生产开发活动	1.3.1 机器人机械加工 系统知识 1.3.2 加工工艺规范
	1.4制订机 器人标准和 规范	1.4.1 能编写机器人产品设计准则 1.4.2 能编写机器人系统设计准则 1.4.3 能编写机器人工艺设计准则	1.4.1 机器人设计知识
2. 机器人结构分析优化	2.1 结构方案分析优化	2.1.1 能根据机器人使用工况及需求,利用适当的优化方法及算法(遗传算法、人工神经网络算法等),优化机器人各工序、零部件设计2.1.2 能根据机器人的使用工况,分析优化机器人总体方案2.1.3 能对总体方案进行机械仿真、计算,并对结果进行分析验证	2.1.1 机械仿真分析方法

	2.2. 结构 性能分析优 化	2.2.1 能进行机器人受力分析,对机器人的结构强度、轻量化设计提出合理的优化设计 2.2.2 能以机器人重心优化角度,对机器人的结构布局、模块化设计等提出合理的优化设计 2.2.3 能从动力与传动优化角度,分析机器人的传动机构,选择适用的高效率传动组合	2.2.1 轻量化设计知识 2.2.2 模块化设计知识
	2.3 功能和流程优化	2.3.1 能从工艺、装配、维护的角度, 简化零部件的加工、装配难度,优化加 工工艺及装配流程 2.3.2 能从人机工程设计角度,优化 机器人的外观及使用功能 2.3.3 能判断性能提升空间,规划机 器人的结构升级优化技术路线	2.3.1 机器人人机工程设计知识 2.3.2 装配工艺规范
	3.1 控制系统单元优化	3.1.1 能根据实际业务流程,指定控制单元优先级,优化实际业务流程 3.1.2 能根据机器人产品功能,制定控制系统各单元分布式设计架构 3.1.3 能根据已有机器人功能及性能需求,制订已有控制单元优化设计方案	3.1.1 控制系统知识
3. 机器人控制优化	3.2 电气设 计方案分析 优化	3.2.1 能分析电气系统的可靠性,并 根据电气设计标准提出优化设计方案 3.2.2 能以机器人的电气布局和接口 方式为重点,提出合理的总线布局优化 方案 3.2.3 能遵循电磁兼容、用电安全等 规范,分析机器人安全隐患并提出解决 方案	3.2.1 电气系统知识
	3.3 控制性能分析优化	3.3.1 能针对特种机器人需求进行专业性电气方案设计,提升设备鲁棒性3.3.2 能针对机器人的控制性能升级,优化技术路线方案3.3.3 能针对机器人各控制系统性能,深度优化机器人整机性能	3.3.1 电气系统行性能验证方法
4. 机器人系 统分析及优 化	4.1 机器人产品或系统总体方案制订	4.1.1 能根据机器人产品整体特征及体系,分析机器人系统优劣势,并制定系统升级或重构方案4.1.2 能根据客户需求,制定符合客户特点的机器人产品建设及管理方案4.1.3 能参与项目架构与产品设计,并根据技术发展趋势把控产品技术方向	4.1.1 机器人竞品分析 方法 4.1.2 机器人架构设计 知识

4.2 机器人 系统及产品 整体架构	4.2.1 能根据特种、服务机器人系统 应用需求分析、规划多机器人集群与服 务集群的硬件拓扑及软件架构 4.2.2 能根据系统功能及性能需求, 制定已有系统优化方案 4.2.3 能针对各平台子系统的性能进 行深度优化	4.2.1 多源实时信息系统 架构及性能调优方法
4.3 系统流 程优化与管 理	4.3.1 能建立业务需求收集流程,收集业务指标数据,并根据实际数据建立业务分析模型4.3.2 能根据数据分析情况指导业务开展及流程优化4.3.3 能根据业务流程,管理跨部门的生产开发活动	4.3.1 机器人应用场景 分析方法 4.3.2 机器人系统运营 管理知识

3.2 机器人控制设计与开发

机器人控制设计与开发方向包括机器人控制系统整体设计,机器人核心控制器设计,机器人驱动、控制开发及调试,机器人感知及交互控制,底层控制硬件设计,机器人控制系统测试。

3. 2. 1 初级

职业功能	工作内容	专业能力要求	相关知识要求
1. 机器人 控制系统 整体设计	1.1 需求调研与分析	1.1.1 能根据现场调研,编写机器人控制系统现场调研报告 1.1.2 能组织市场调研,编写机器人控制系统市场调研报告 1.1.3 能分析机器人的控制系统性能,编写机器人控制系统分析报告	1.1.1 机器人控制系统 调研方法 1.1.2 机器人需求编写 方法
	1.2 工业机 器人子控制 系统方案编 写	1.2.1 能根据需求确定工业机器人子控制系统的关键参数和技术指标等 1.2.2 能分析工业机器人的子控制系统功能和性能需求 1.2.3 能根据子控制系统需求设计工业机器人多种控制方案	1.2.1 常用电控原理 1.2.2 常用电控器件工 作原理
	1.3 服务特种机器人子控制系统方案编写	1.3.1 能根据需求确定特种、服务机器 人子控制系统的关键参数和技术指标等 1.3.2 能分析特种、服务机器人的子控 制系统功能和性能需求 1.3.3 能根据子控制系统需求设计特 种、服务机器人多种控制方案	1.3.1 电控系统基本原理 1.3.2 电控系统方案设计知识
2. 机器人	2.1 微处理 器开发	2.1.1 能设计单片机电路方案 2.1.2 能使用 C 语言编写机器人基本控制功能 2.1.3 能根据用户需求,使用 C 语言设计微芯片程序框架	2.1.1 单片机基础知识 2.1.2 常见通信协议知识 2.1.3 嵌入式软件设计 知识
核心控制 器设计	2.2 可编程 逻辑控制器 开发	2.2.1 能使用运算放大器和电阻电容等器件,设计模拟放大电路图纸 2.2.2 能根据项目需求编写可编程逻辑控制器程序 2.2.3 能根据项目需求编写多轴电机运动控制算法	2.2.1 可编程逻辑控制器基础知识 2.2.2 运动控制方法 2.2.3 多电机同步控制知识

	2.3 控制器软件开发	2.3.1 能基于人机交互的需求,编写人机交互界面程序 2.3.2 能根据系统需求,控制单轴电机位置、速度 2.3.3 能基于项目需求,设计有刷和无刷控制方法	2.3.1 人机交互界面编程知识 2.3.2 有刷、无刷电机控制知识 2.3.3 单轴电机控制知识
	3.1 电气布局	3.1.1 能根据系统需求,对控制器、驱动器、I/0 模块等关键器件选型3.1.2 能根据系统需求,使用流程制图软件等设计系统框图、供电框图等3.1.3 能使用计算机辅助设计(CAD)软件等设计安装布局图	3.1.2 流程制图软件 应用知识 3.1.3 CAD 等制图软件 知识
3. 机器人 驱动、控 制开发及 调试	3.2 电气原理图设计	3.2.1 能设计电气原理图 3.2.2 能根据系统需求设计可编程控制 器为核心的控制回路和主回路 3.2.3 能根据系统需求设计嵌入式控制 板为核心的控制回路和主回路	3.2.1 电气原理图设计软件知识
	3.3 电气装配	3.3.1 能根据安装布局,装配元器件 3.3.2 能根据电气原理图,进行元器件 接线 3.3.3 能使用万用表排查短路等情况, 进行上电前检查	3.3.1 电气装配规范
4. 机器人 感知及交 互控制	4.1 机器人 交互控制设 计	4.1.1 能设计绘制感知电气图纸 4.1.2 能根据项目需求,对感知元器件 进行选型 4.1.3 能根据项目需求,设计绘制常用 传感器控制电路图纸	4.1.1 感知传感器知识 4.1.2 机器人电气系统 技术 4.1.3 印刷电路板制作 原理
	4.2 机器人 传感交互控 制软件编程	4.2.1 能根据客户需求,开发机器人感知交互的软件功能 4.2.2 能根据感知交互软件功能,编写 嵌入式软件程序 4.2.3 能根据用户反馈的嵌入式软件问题,分析嵌入式软件程序	4.2.1 机器人智能控制知识 4.2.2 C语言编程知识
	4.3 机器人常用传感器测试	4.3.1 能根据测试结果对常用传感品进行性能分析 4.3.2 能根据软硬件工作需求,对机器 人软硬件进行调试 4.3.3 能根据测试问题,进行故障排查	4.3.1 感知元器件测试 方法 4.3.2. 机器人性能测 试分析方法 4.3.3 电气调试和故障 排查方法

5. 机器人底层控制硬件设计	5.1 电路板 焊接方案设 计	5.1.1 能识读电路板图 5.1.2 能判断焊接过程中的错误 5.1.3 能排除常用控制电路短路、断路 等故障	5.1.1 电工基础知识 5.1.2 电路板装配调试 知识 5.1.3 焊接排故方法
	5.2 双层电 路板设计	5.2.1 能设计双层电路板 5.2.2 能设计由常用控制单元组成的电路板 5.2.3 能根据功能和需求,对电子元器件进行电流电压等参数计算	5.2.1 电路板设计软件 使用知识 5.2.2 电子元器件工作 原理 5.2.3 印刷电路板设计 知识
	5.3 常用机器人控制部件器件选型	5.3.1 能根据客户需求设计组合逻辑电路 5.3.2 能根据客户需求设计模拟电路 5.3.3 能根据用户需求对电源类型及功率进行选型	5.3.1 数字电路工作原理 5.3.2 模拟电路工作原理 5.3.3 电源工作原理
6. 机器人 经测试	6.1 机器人 电气控制系 统测试	6.1.1 能依据机器人传感器匹配方案原理,测试机器人传感器方案可行性6.1.2 能依据机器人电气控制工作原理,测试机器人电气控制方案可行性6.1.3 能依据机器人电气控制系统方案原理,测试机器人电气控制系统方案可行性	6.1.1 机器人电气控制 系统测试方法
	6.2 机器人 嵌入式软件 控制系统测 试	6.2.1 能依据机器人避障系统方案,测试机器人避障系统方案可行性 6.2.2 能依据机器人嵌入式软件控制工作原理,测试机器人嵌入式软件控制方案可行性 6.2.3 能依据机器人嵌入式软件控制系统方案,测试机器人嵌入式软件控制系统方案,测试机器人嵌入式软件控制系统方案可行性	6.2.1 机器人嵌入式软件控制系统测试方法
	6.3 机器人控制系统测试方案设计	6.3.1 能基于用户使用的便利性,编制机器人控制系统资料6.3.2 能根据项目需求,分析机器人控制系统功能和设计路线6.3.3 能根据机器人软件控制系统需求,设计机器人软件控制方案	6.3.1 机器人控制系统测试方法

3. 2. 2 中级

职业功能	工作内容	专业能力要求	相关知识要求
	1.1 工业机器 人底层控制 系统设计	1.1.1 能根据需求,编制工业机器人底 层控制系统的关键参数和技术指标等 1.1.2 能分析工业机器人的底层控制系 统功能和性能需求 1.1.3 能根据底层控制系统需求设计工 业机器人多种控制方案	1.1.1 自动控制原理 1.1.2 底层控制系统工 作原理 1.1.3 底层控制系统方 案设计方法
1. 机器人 底层控制 系统设计	1.2服务机器 人底层控制 系统设计	1.2.1 能根据需求,编制服务机器人底 层控制系统的关键参数和技术指标等 1.2.2 能分析服务机器人底层控制系统 功能和性能需求 1.2.3 能根据底层控制系统需求设计服 务机器人多种控制方案	1.2.1 底层控制系统方 案分析方法 1.2.2 底层控制系统可 能性分析方法 1.2.3 底层控制系统设 计方法
	1.3 特种机器 人底层控制 系统设计	1.3.1 能根据需求,编制高温、高压等 特殊环境下机器人底层控制系统的关键 参数和技术指标等 1.3.2 能分析高温、高压等特殊环境下 机器人底层控制系统功能和性能需求 1.3.3 能根据底层控制系统需求设计特 种机器人多种控制方案	1.3.1 底层控制系统方 案分析方法 1.3.2 底层控制系统可 能性分析方法 1.3.3 底层控制系统设 计方法
	2.1 机器人运动控制开发	2.1.1 能设计高性能电机驱动器 2.1.2 能设计板载低纹波开关电源电路 2.1.3 能调试电机控制及设置合理参数	2.1.1 直流伺服电机、 交流伺服电机控制知识 2.1.2 PID 参数控制知识
2. 机器人 核心控制 器设计	2.2 多轴电机 协同控制开 发	2.2.1 能集成设计多轴电机协同控制器 2.2.2 能根据需求设计常用通信接口协议 2.2.3 能独立设计电机驱动的感知电路	2.2.1 电机控制知识 2.2.2 机器人各部件功 耗计算方法 2.2.3 电机传感知识
	2.3 机器人核 心控制系统 开发	2.3.1 能设计机器人核心控制系统逻辑 2.3.2 能根据需求设计机器人核心控制功能 2.3.3 能独立设计机器人自动控制功能	2.3.1 机器人工作逻辑 设计方法 2.3.2 机器人自动控制 原理 2.3.3 机器人核心功能 设计知识
3. 机器人 驱动、控 制开发及 调试	3.1 电路板仿 真和优化	3.1.1 能使用电路仿真软件仿真电路功能 3.1.2 能对仿真电路出现的问题,分析、 优化电路 3.1.3 能根据系统功能需求,制定仿真 测试方案	3.1.1 电路板仿真软件 知识 3.1.2 电路知识

	3.2 单片机开发和调试	3.2.1 能编写单电机或多电机的运动控制程序 3.2.2 能编写电机、气缸、液压缸等运动部件的控制程序 3.2.3 能编写机器人各部件驱动程序	3.2.1 单片机程序开发知识
	3.3 可编程控制器开发和调试	3.3.1 能编写单电机或多电机的运动 控制程序并调试 3.3.2 能编写电机、气缸、液压缸等运 动部件的手动控制程序并调试 3.3.3 能编写机器人各部件驱动程序	3.3.1 可编程控制器程 序开发知识
	4.1 硬件系统框架设计	4.1.1 能根据项目需求,选择适用的感知传感器器件 4.1.2 能基于传感器工作原理,设计硬件系统方案 4.1.3 能根据项目需求,设计传感器系统框架	4.1.1 环境感知传感器 知识 4.1.2 传感器系统设计 方法
4. 机器人 感知及交 互控制	4.2控制系统架构设计	4.2.1 能设计感知电气,并排除故障 4.2.2 能设计感知系统框架,并评估合 理性 4.2.3 能对智能感知算法进行设计、编 写算法程序	4.2.1 感知传感器的融合知识 4.2.2 分布式传感器通信知识 4.2.3 智能感知算法知识
	4.3 防护系统架构设计	4.3.1 能基于红外测距,设计机器人避 障防护系统 4.3.2 能基于惯性测量单元,设计机器 人位置感知系统 4.3.3 能基于防跌落传感器,设计机器 人跌落感知系统	4.3.1 机器人红外测距 避障系统设计方法 4.3.2 机器人 IMU 位置 感知系统设计方法 4.3.3 机器人防跌落传 感器感知系统设计方法
5. 机器人 底层控制 硬件设计	5.1多层电路板设计	5.1.1能根据用户需求,进行高频电路设计 5.1.2能根据用户需求,提升电路抗干扰能力 5.1.3能根据用户需求,制订逻辑信号时序分析与设计方案 5.1.4能根据用户需求,制订电路阻抗匹配、电路板阻抗控制方案	5.1.1 多层电路板设计 原理 5.1.2 高频电路设计方 法 5.1.3 电路稳定性设计 方法
	5.2控制和驱动器设计	5.2.1 能根据电子信号放大工作原理, 计算信号放大电路参数 5.2.2 能根据项目设计需求,设计通信 电路 5.2.3 能进行控制器输入/输出、电源控 制单元等控制部件设计	5.2.1 放大电路设计方法 5.2.2 通信电路的设计 方法 5.2.3 开关电源的电感 和电容参数设计方法

	5.3 电磁兼容 性等可靠性 设计	5.3.1能对散热、接口保护等进行可靠性设计 5.3.2能对信号抗干扰和电源进行完整性设计 5.3.3能处理电磁兼容问题的定位,并制订解决方案	5.3.1 功耗和散热平衡 知识 5.3.2 信号完整性知识 5.3.3 电磁兼容安规知 识
	6.1 机器人控制系统测试方案编制	6.1.1 能评估机器人控制系统测试方案的合理性 6.1.2 能编制、更改、归档机器人控制系统资料 6.1.3 能对机器人控制系统的功能模块编写测试方案	6.1.1 机器人硬件控制 系统测试方法 6.1.2 机器人软件控制 系统测试方法
6. 机器人控制系统测试	6.2 机器人控制系统实地场景模拟	6.2.1 能基于项目需求,进行机器人控制系统方案设计 6.2.2 能基于项目需求,进行机器人控制系统模拟实地测试,并判别与处理异常情况 6.2.3 能基于项目需求,采集机器人数据 6.2.4 能对机器人控制系统进行功能模块测试	6.2.1 机器人控制系统 落地测试方法 6.2.2 机器人控制系统 数据采集分析方法
	6.3 机器人整机控制测试	6.3.1 能对机器人通信控制方案进行可行性测试 6.3.2 能对机器人各个系统进行联调测试 6.3.3 能对机器人整机工作情况进行测试	6.3.1 机器人通信控制 方案测试方法 6.3.2 机器人链条测试 分析知识 6.3.3 机器人整机工作 测试方法

3. 2. 3 高级

职业功能	工作内容	专业能力要求	相关知识要求
	1.1 机器人 技术咨询	1.1.1 能根据同类型机器人产品特征对比,编写竞品分析报告 1.1.2 能根据机器人产品整体特征及体系,梳理产品竞争优劣势并编写升级或重构方案 1.1.3 能根据客户需求,制定符合客户特点的机器人产品建设及管理方案 1.1.4 能参与机器人项目架构与产品设计,并根据技术发展趋势把控产品技术方向	1.1.1 机器人质量与安全控制知识
1. 机器人技 术管理	1.2 解决方案设计	1.2.1 能制定机器人产品宣传策略, 引导和挖掘客户潜在需求 1.2.2 能挖掘机器人行业普遍需求, 总结分析机器人产品价值特征 1.2.3 能主动分析机器人市场情况, 制定机器人产品运营策略 1.2.4 能根据机器人市场及客户信息,研判机器人产品业务方向	1.2.1 机器人需求挖掘知识 1.2.2 机器人产品市场运营策略
	1.3指导生产	1.3.1 能编写机器人机械加工工艺、电气加工工艺、软件设计等规程 1.3.2 能收集生产指标数据,并根据实际数据建立生产分析模型 1.3.3 能根据数据分析情况指导生产及流程优化 1.3.4 能根据生产流程,管理跨部门的生产开发活动	1.3.1 机器人机械加工 系统知识 1.3.2 加工工艺规范
	1.4制订机 器人标准和 规范	1.4.1 能编写机器人产品设计准则 1.4.2 能编写机器人系统设计准则 1.4.3 能编写机器人工艺设计准则	1.4.1 机器人设计知识
2. 机器人结构分析优化	2.1 结构方案分析优化	2.1.1 能根据机器人使用工况及需求,利用适当的优化方法及算法(遗传算法、人工神经网络算法等),优化机器人各工序、零部件设计2.1.2 能根据机器人的使用工况,分析优化机器人总体方案2.1.3 能对总体方案进行机械仿真、计算,并对结果进行分析验证	2.1.1 机械仿真分析方法

	2.2. 结构性能分析优化	2.2.1 能进行机器人受力分析,对机器人的结构强度、轻量化设计提出合理的优化设计 2.2.2 能以机器人重心优化角度,对机器人的结构布局、模块化设计等提出合理的优化设计 2.2.3 能从动力与传动优化角度,分析机器人的传动机构,选择适用的高效率传动组合	2.2.1 轻量化设计知识 2.2.2 模块化设计知识
	2.3 功能和流程优化	2.3.1 能从工艺、装配、维护的角度, 简化零部件的加工、装配难度,优化加 工工艺及装配流程 2.3.2 能从人机工程设计角度,优化 机器人的外观及使用功能 2.3.3 能判断性能提升空间,规划机 器人的结构升级优化技术路线	2.3.1 机器人人机工程设计知识 2.3.2 装配工艺规范
3. 机器人控制优化	3.1 控制系统单元优化	3.1.1 能根据实际业务流程,指定控制单元优先级,优化实际业务流程 3.1.2 能根据机器人产品功能,制定控制系统各单元分布式设计架构 3.1.3 能根据已有机器人功能及性能需求,制订已有控制单元优化设计方案	3.1.1 控制系统知识
	3.2 电气设 计方案分析 优化	3.2.1 能分析电气系统的可靠性,并根据电气设计标准提出优化设计方案3.2.2 能以机器人的电气布局和接口方式为重点,提出合理的总线布局优化方案3.2.3 能遵循电磁兼容、用电安全等规范,分析机器人安全隐患并提出解决方案	3. 2. 1 电气系统知识
	3.3 控制性能分析优化	3.3.1 能针对特种机器人需求进行专业性电气方案设计,提升设备鲁棒性3.3.2 能针对机器人的控制性能升级,优化技术路线方案3.3.3 能针对机器人各控制系统性能,深度优化机器人整机性能	3.3.1 电气系统行性能验证方法
4. 机器人系 统分析及优 化	4.1 机器人 产品或系统 总体方案制 订	4.1.1 能根据机器人产品整体特征及体系,分析机器人系统优劣势,并制定系统升级或重构方案4.1.2 能根据客户需求,制定符合客户特点的机器人产品建设及管理方案4.1.3 能参与项目架构与产品设计,并根据技术发展趋势把控产品技术方向	4.1.1 机器人竞品分析 方法 4.1.2 机器人架构设计 知识

4.2 机器人 系统及产品 整体架构	4.2.1 能根据特种、服务机器人系统 应用需求分析、规划多机器人集群与服 务集群的硬件拓扑及软件架构 4.2.2 能根据系统功能及性能需求, 制定已有系统优化方案 4.2.3 能针对各平台子系统的性能进 行深度优化	4.2.1 多源实时信息系统 架构及性能调优方法
4.3 系统流 程优化与管 理	4.3.1 能建立业务需求收集流程,收集业务指标数据,并根据实际数据建立业务分析模型4.3.2 能根据数据分析情况指导业务开展及流程优化4.3.3 能根据业务流程,管理跨部门的生产开发活动	4.3.1 机器人应用场景 分析方法 4.3.2 机器人系统运营 管理知识

3.3 机器人系统设计与开发

机器人系统设计与开发方向包括机器人产品架构设计, 机器人系统应用开发, 机器人系统智能感知算法集成开发, 机器人系统性能测试。

3.3.1 初级

职业功能	工作内容	专业能力要求	相关知识要求
	1.1 需求调研与分析	1.1.1 能根据客户需求调研情况,设计机器人软件系统功能 1.1.2 能根据系统需求,编制市场分析报告、宣传材料 1.1.3 能解答客户技术问题,并提供相关参考信息 1.1.4 能根据解决方案,讲解机器人系统功能	1.1.1 机器人平台知识 1.1.2 机器人系统需求 分析方法
1. 机器人 产品架构 设计	1.2 机器人 系统软件设 计方案编写	1.2.1 能根据机器人系统需求,编写机器人系统非功能需求报告 1.2.2 能根据系统需求工程结果,整理需求文档 1.2.3 能根据机器人产品白皮书或相关技术文档,整理产品解决方案	1.2.1 机器人系统解决方案设计方法
	1.3 机器人 软件系统技 术支持	1.3.1 能根据机器人系统功能,编制系统使用手册 1.3.2 能根据机器人使用场景,编制培训计划文档 1.3.3 能根据机器人的应用故障,整理机器人的问题反馈、解决方式,并整理编制文档	1.3.1 机器人软件系统 技术支持文档编制方法
2. 机器人 系统应用 开发	2.1 机器人软件系统设备选型	2.1.1 能根据施工方案,部署机器人系统服务器硬件并配置设备参数 2.1.2 能根据组网需求,进行网络设备选型并配置设备参数 2.1.3 能根据工业机器人应用场景,进行工控机选型并配置设备参数 2.1.4 能参照施工方案,规划和部署服务器、机架、交换机、路由器等系统设备 2.1.5 能根据现场设施及电力系统,对设备进行上电测试和点亮测试	2.1.1 网络设备硬件知识 2.1.2 服务器接口知识 2.1.3 工控机硬件知识

	2.2 机器人应用软件部署	2.2.1 能根据应用承载需求,安装Windows, Linux等操作系统 2.2.2 能根据软件使用需求,安装或编译端口通信、认证模块、负载均衡、存储模块、调度模块等功能组件 2.2.3 能安装数据库、反向代理服务器、应用服务器等软件 2.2.4 能使用命令启停组件服务或进程	2.2.1 数据库配置知识 2.2.2 代理配置方法
	2.3 机器人 系统软件功 能开发	2.3.1 能使用版本管理工具管理代码仓库中的代码版本 2.3.2 能根据系统架构设计,修改后台服务模块 2.3.3 能根据人机交互需求,修改交互逻辑代码或页面 2.3.4 能使用数据库管理工具和 Sql命令,管理数据库	2.3.1 代码版本管理工 具知识 2.3.2 系统常用开发语 言、开发工具应用方法 2.3.3 数据库管理工具 应用方法
	3.1 机器人 操作系统集 成	3.1.1 能根据既定机器人系统技术方案,分析子操作系统的需求3.1.2 能针对不同操作系统需求,部署对应的算法开发环境3.1.3 能在现有机器人操作系统上进行模块部署与功能集成开发	3.1.1 机器人操作系统 知识 3.1.2 机器人系统开发 规范
3. 机器人 系统感知 算法集成 开发	3.2 机器人感知数据采集及预处理	3.2.1 能根据机器人系统技术方案,选择适用的感知数据存储形式3.2.2 能根据采集需求,对采集脚本进行定时、依赖配置调度3.2.3 能根据业务需求对遗漏数据、噪音数据、差异数据等进行清洗3.2.4 能根据算法需求对感知数据进行标注与数据集制作3.2.5 能根据算法需求制订视觉、音频、文本的训练集与测试集	3.2.1 离线、实时数据 采集方法 3.2.2 数据预处理方法
	3.3 机器人 感知算法应 用集成	3.3.1 能根据系统需求,选择适用的常规机器人视觉、听觉、触觉、嗅觉等算法 3.3.2 能调用常规模型类库进行机器人感知模型训练 3.3.3 能集成常规机器人感知算法,实现系统感知功能	3.3.1 机器学习算法框架知识
4. 机器人 系统性能 测试	4.1 机器人软件系统测试方案编写	4.1.1 能根据测试方案设计,编写机器人软件系统测试方案 4.1.2 能根据测试方案设计,编写测	4.1.1 测试用例规范

		试用例	
		4.1.3 能根据测试关键点及难点,编	
		写测试方法	
		4.2.1 能根据系统功能,编写功能需	
	4.2 机器人	求规格书	4.2.1 功能需求规格书
	软件系统功	4.2.2 能根据系统功能完成情况,统	编写知识
	能测试	计分析完成结果	4.2.2 交互测试基础知
	月七次月 LLL	4.2.3 能根据软件交互要求,核实交	识
		互的友好性、易用性	
		4.3.1 能根据系统需求,使用性能负	
		载测试工具、压力测试工具等,进行机	
	4.3 机器人 软件系统性 能测试	器人系统稳定性测试	
		4.3.2 能根据系统运行环境要求, 使	
		用浏览器及操作系统,进行机器人系统	4.3.1 稳定性测试知识
		兼容性测试	4.3.2 兼容性测试知识
		4.3.3 能根据安全要求,使用漏洞扫	4.3.3 安全性测试知识
	月日7月14人	描工具、抓包工具等进行机器人系统安	4.3.4 配置性测试知识
		全性测试	
		4.3.4 能根据系统软件运行要求,使	
		用不同类型硬件参数的设备,进行配置	
		测试	
	4.4 机器人	4.4.1 能根据测试过程整理过程文档	4.4.1 测试文档编写规
	软件系统测	4.4.2 能根据测试结果整理测试数据	范知识
	以什然统则 试报告编写	4.4.3 能根据开发计划输出测试报告	4.4.2 测试数据存档知
	MUX 口 为时一J	文档	识

3. 3. 2 中级

职业功能	工作内容	专业能力要求	相关知识要求
	1.1 机器人软件系统框架设计	1.1.1 能进行需求分析,确定客户需求,定义目标系统 1.1.2 能根据业务功能需求,设计系统中的实体与功能 1.1.3 能根据系统非功能需求,判定系统实施技术路线,实施系统框架搭建、实现功能	1.1.1 机器人系统软件需求工程知识 1.1.2 机器人应用系统架构设计方法 1.1.3 机器人应用服务开发方法
1. 机器人产品架构设计	1.2系统人 机交互原型 设计	1.2.1 能根据客户需求,收集分析目标用户的习惯交互方式 1.2.2 能根据需求,设计机器人语音指令、语音反馈、指示灯反馈等交互功能 1.2.3 能根据需求,设计机器人系统交互方案,开发系统界面原型	1.2.1 交互设计知识 1.2.2 认知与智能用户界 面知识
	1.3 机器人 应用场景三 维设计	1.3.1 能根据机器人的应用场景,设计三维交互方案 1.3.2 能根据机器人使用流程,设计三维仿真方案 1.3.3 能根据系统需求,确定三维引擎选型,并编写实施技术方案	1.2.1 三维引擎应用知识 1.2.2 三维交互设计方法
2. 机器人系统应用开发	2.1 机器人 应用服务开 发	2.1.1 能根据系统的要求,编写系统数据接口程序 2.1.2 能根据系统组件接口,编写数据访问程序 2.1.3 能根据应用系统的业务需求,开发适用的数据操纵功能代码 2.1.4 能根据接口规范,封装功能接口 2.1.5 能根据系统调度需求,开发多机器人调度功能 2.1.6 能根据机器人的应用需求,开发对应的异常管理方法	2.1.1 数据库模型知识 2.1.2 服务接口开发知 识
	2.2 机器人 系统人机交 互开发	2.2.1 能根据人机交互的设计方案,进行视觉还原 2.2.2 能根据设计要求,定义信息载体的类型 2.2.3 能根据交互需求,定义信息输出的形式 2.2.4 能根据系统的要求,进行兼容性的设计 2.2.5 能根据三维场景要求,进行三	2.2.1 前端开发知识 2.2.2 三维开发知识

		维场景的构建及开发	
	2.3 机器人 信息处理系 统开发	2.3.1 能根据需求分析,系统建模 2.3.2 能根据机器人系统信息传递 需求,设计分解系统信息处理系统 2.3.3 能根据业务功能需求,处理线 上或离线信息	2.3.1 机器人系统分布式 数据处理知识
	3.1 机器人 感知视觉算 法开发	3.1.1 能根据系统需求,确定适用的算法框架、机器视觉算法3.1.2 能根据应用场景需求,设计和开发算法模型3.1.3 能根据系统需求,训练和调优视觉感知算法模型	3.1.1 机器视觉算法知识
3. 机器人系 统感知算法 开发	3.2 机器人 感知导航算 法开发	3.2.1 能构建度量地图、拓扑地图及 点云地图等 3.2.2 能根据不同工作场景,选择激 光、视觉、GNSS、UWB等导航方式 3.2.3 能根据不同传感器感知环境, 判断环境信息并处理数据 3.2.4 能根据条件规划出最优路径	3.2.1 三维空间的刚体运动及坐标变换原理 3.2.2 非线性优化知识
	3.3 机器人感知自然语言处理	3.3.1 能根据系统需求,选择适用的 算法框架、自然语言处理算法 3.3.2 能根据应用场景需求,设计和 开发算法模型 3.3.3 能根据系统需求,训练和调优 自然语言处理算法模型	3.3.1 自然语言处理算法 知识
1 扣婴人系	4.1 机器人软件系统测试方案设计	4.1.1 能根据系统功能特点,编写和分析测试关键点及难点 4.1.2 能根据系统功能特点,制定测试模型 4.1.3 能根据系统进度制定测试计划	4.1.1 测试方法知识
4. 机器人系统性能测试	4.2 机器人系统测试框架设计	4.2.1 能根据系统测试要求, 搭建单元测试框架, 提供测试脚本运行环境及异常校验4.2.2 能根据系统测试要求, 搭建数据库测试框架, 分离数据与脚本4.2.3 能根据系统测试要求, 搭建持续集成环境	4.2.1 测试环境应用知识

4.3 机器人系统功能测试脚本开发	4.3.1 能根据测试用例,对系统进行接口、功能、压力等黑盒测试,并编写测试报告 4.3.2 能根据测试用例,对代码进行逻辑、分支等白盒测试,并编写测试报告 4.3.3 能根据相应测试需求,开发测试脚本	4.3.1测试工具应用方法 4.3.2测试脚本开发方法
-------------------	---	--------------------------------

3.3.3 高级

职业功能	工作内容	专业能力要求	相关知识要求
	1.1 机器人 技术咨询	1.1.1 能根据同类型机器人产品特征对比,编写竞品分析报告 1.1.2 能根据机器人产品整体特征及体系,梳理产品竞争优劣势并编写升级或重构方案 1.1.3 能根据客户需求,制定符合客户特点的机器人产品建设及管理方案 1.1.4 能参与机器人项目架构与产品设计,并根据技术发展趋势把控产品技术方向	1.1.1 机器人质量与安全控制知识
1. 机器人技 术管理	1.2 解决方案设计	1.2.1 能制定机器人产品宣传策略, 引导和挖掘客户潜在需求 1.2.2 能挖掘机器人行业普遍需求, 总结分析机器人产品价值特征 1.2.3 能主动分析机器人市场情况, 制定机器人产品运营策略 1.2.4 能根据机器人市场及客户信 息,研判机器人产品业务方向	1.2.1 机器人需求挖掘知识 1.2.2 机器人产品市场运营策略
	1.3 指导生产	1.3.1 能编写机器人机械加工工艺、电气加工工艺、软件设计等规程 1.3.2 能收集生产指标数据,并根据实际数据建立生产分析模型 1.3.3 能根据数据分析情况指导生产及流程优化 1.3.4 能根据生产流程,管理跨部门的生产开发活动	1.3.1 机器人机械加工 系统知识 1.3.2 加工工艺规范
	1.4制订机 器人标准和 规范	1.4.1 能编写机器人产品设计准则 1.4.2 能编写机器人系统设计准则 1.4.3 能编写机器人工艺设计准则	1.4.1 机器人设计知识
2. 机器人结构分析优化	2.1 结构方案分析优化	2.1.1 能根据机器人使用工况及需求,利用适当的优化方法及算法(遗传算法、人工神经网络算法等),优化机器人各工序、零部件设计2.1.2 能根据机器人的使用工况,分析优化机器人总体方案2.1.3 能对总体方案进行机械仿真、计算,并对结果进行分析验证	2.1.1 机械仿真分析方法

	2.2. 结构 性能分析优 化	2.2.1 能进行机器人受力分析,对机器人的结构强度、轻量化设计提出合理的优化设计 2.2.2 能以机器人重心优化角度,对机器人的结构布局、模块化设计等提出合理的优化设计 2.2.3 能从动力与传动优化角度,分析机器人的传动机构,选择适用的高效率传动组合	2.2.1 轻量化设计知识 2.2.2 模块化设计知识
	2.3 功能和流程优化	2.3.1 能从工艺、装配、维护的角度, 简化零部件的加工、装配难度,优化加 工工艺及装配流程 2.3.2 能从人机工程设计角度,优化 机器人的外观及使用功能 2.3.3 能判断性能提升空间,规划机 器人的结构升级优化技术路线	2.3.1 机器人人机工程设计知识 2.3.2 装配工艺规范
	3.1 控制系统单元优化	3.1.1 能根据实际业务流程,指定控制单元优先级,优化实际业务流程 3.1.2 能根据机器人产品功能,制定控制系统各单元分布式设计架构 3.1.3 能根据已有机器人功能及性能需求,制订已有控制单元优化设计方案	3.1.1 控制系统知识
3. 机器人控制优化	3.2 电气设 计方案分析 优化	3.2.1 能分析电气系统的可靠性,并 根据电气设计标准提出优化设计方案 3.2.2 能以机器人的电气布局和接口 方式为重点,提出合理的总线布局优化 方案 3.2.3 能遵循电磁兼容、用电安全等 规范,分析机器人安全隐患并提出解决 方案	3.2.1 电气系统知识
	3.3 控制性能分析优化	3.3.1 能针对特种机器人需求进行专业性电气方案设计,提升设备鲁棒性3.3.2 能针对机器人的控制性能升级,优化技术路线方案3.3.3 能针对机器人各控制系统性能,深度优化机器人整机性能	3.3.1 电气系统行性能验证方法
4. 机器人系 统分析及优 化	4.1 机器人产品或系统总体方案制订	4.1.1 能根据机器人产品整体特征及体系,分析机器人系统优劣势,并制定系统升级或重构方案4.1.2 能根据客户需求,制定符合客户特点的机器人产品建设及管理方案4.1.3 能参与项目架构与产品设计,并根据技术发展趋势把控产品技术方向	4.1.1 机器人竞品分析 方法 4.1.2 机器人架构设计 知识

4.2 机器人 系统及产品 整体架构	4.2.1 能根据特种、服务机器人系统 应用需求分析、规划多机器人集群与服 务集群的硬件拓扑及软件架构 4.2.2 能根据系统功能及性能需求, 制定已有系统优化方案 4.2.3 能针对各平台子系统的性能进 行深度优化	4.2.1 多源实时信息系统 架构及性能调优方法
4.3 系统流 程优化与管 理	4.3.1 能建立业务需求收集流程,收集业务指标数据,并根据实际数据建立业务分析模型4.3.2 能根据数据分析情况指导业务开展及流程优化4.3.3 能根据业务流程,管理跨部门的生产开发活动	4.3.1 机器人应用场景 分析方法 4.3.2 机器人系统运营 管理知识

4 权重表

4.1 理论知识权重表

		初级 (%)			中级 (%)			高级 (%) [©]		
专业技术等级 项目		机器人 结构设 计与开 发方向	机器人 控制设 计与开 发方向	机器人 系统设 计与开 发方向	机器人 结构设 计与开 发方向	机器人 控制设 计与开 发方向	机器人 系统设 计与开 发方向	方案一	方案二	方案三
基本	职业道德	5	5	5	5	5	5	5	5	5
要求	基础知识	20	20	20	20	20	20	20	20	20
	机器人结构方案设计	30			30					
	机器人零部件设计	10								
	机器人机构设计				10					
	机器人结构分析	25								
	机器人性能仿真				25					
	机器人机械装配与测试	10								
	机器人质量评估				10					
	机器人控制系统整体设计		30							
	机器人底层控制系统设计					30				
相关	机器人核心控制器设计		10			10				
知识 要求	机器人驱动、控制开发及调试		5			5				
女 水	机器人感知及交互控制		5			5				
	机器人底层控制硬件设计		15			15				
	机器人控制系统测试		10			10				
	机器人产品架构设计			25			25			
	机器人系统应用开发			30			30			
	机器人系统感知算法集成开发			10						
	机器人系统感知算法开发						10			
	机器人系统性能测试			10			10			
	机器人技术管理							20	20	20
	机器人结构分析优化							35	10	10

职业编码 2-02-38-10

机器人控制优化							10	35	10
机器人系统分析及优化							10	10	35
合计	100	100	100	100	100	100	100	100	100

4.2 专业能力要求权重表

专业技术等级项目		7	初级(%)		中级 (%)			高级 (%) [©]		
		机器人 结构设 计与开 发方向	机器人 控制设 计与开 发方向	机器人 系统设 计与开 发方向	机器人 结构设 计与开 发方向	机器人 控制设 计与开 发方向	机器人 系统设计与 方向	方案一	方案二	方案三
	机器人结构方案设计	10			10					
	机器人零部件设计	40								
	机器人机构设计				40					
	机器人结构分析	15								
	机器人性能仿真			-	15					
	机器人机械装配与测试	35								
	机器人质量评估				35					
	机器人控制系统整体设计		5					İ	-	
	机器人底层控制系统设计					5				
专业 能力	机器人核心控制器设计		25			25				
要求	机器人驱动、控制开发及调试		20			20				
	机器人感知及交互控制		30			30				
	机器人底层控制硬件设计		10			10				
	机器人控制系统测试		10			10				
	机器人产品架构设计			5			5		-	
	机器人系统应用开发			10			10			
	机器人系统感知算法集成开发			45						
	机器人系统感知算法开发						45			
	机器人系统性能测试			40			40			
	机器人技术管理							10	10	10

	机器人结构分析优化							50	20	20
	机器人控制优化							20	50	20
	机器人系统分析及优化							20	20	50
合计		100	100	100	100	100	100	100	100	100

注①:符合条件的学员可自主选择依据权重表高级方案 1 或方案 2 或方案 3 命制的试卷参加考核。